

A.2.U nl bazning E003 linqA 18hAi

© Rohm and Haas Company, 2002.

coatingscommunications@rohmhaas.com

For additional information on true 100% acrylic elastomeric coatings with the high-performance profile you need, contact your local Rohm and Haas technical representative or e-mail us at

Elastomeric Coatings

Elastomeric Coatings:

If It's An Elastomeric , A Coating You Want, Make Sure It's A True Elastomeric Coating You Get!

Here Are The Facts About A True High-Performance Elastomeric Coating, Also Known As An EWC (EWCs)

- Are Applied at 16 Mils or Greater.
 - Are Applied In Two Coats To Assure Coverage and Waterproofing.
 - Maintain Their Color Best In Whites, Off White, and Light Colors.
 - Resist Wind Driven Rain.
 - ▶ Bridge Hairline Cracks.
 - ▶ Perform Over a Broad Temperature Range.
 - ▶ Resist Picking Up Dirt.
 - Are Alkali Resistant.

Enough Said.

Make Sure You Get What

You Are Paying For

When You Request An

Elastomeric Coating!

▶ A Properly Applied EWC Can Not Make Up For Poor Construction Techniques.

PERFORMANCE PROPERTIES TRUE ELASTOMERIC VS. "SO CALLED ELASTOMERIC"

	TRUE ELASTOMERIC COATING	SO CALLED ELASTOMERIC
ALKALI RESISTANCE	**************************************	
TENSILE STRENGTH, PSI ^a		
0° F.	725	4600
32° F.	350	1400
75° F.	225	450
ELONGATION, %		
0° F.	100	6
32° F.	165	68
75° F.	310	175
ABILITY TO BRIDGE CRACKS	EXCELLENT	POOR
DIRT PICK UP RESISTANCE	EXCELLENT	POOR
ABILITY TO WITHSTAND WIND DRIVEN RAIN	YES	MAYBE

 $^{^{}a}$ Two coats, cured 21 days at 77° F. and 50% relative humidity. Tensile measured using ASTM D412-83 at a rate of 2 inches/minute using a dumbbell-shaped sample with an apparent Lo = 0.725

Alkali Resistance

An accelerated alkali resistance test demonstrates the superiority of a true acrylic EWC compared to a so-called EWC. Results show that after five days in a caustic solution, the so-called EWC (left) displays severe degradation, while the true EWC (right) remains relatively unaffected.

Crack Bridging

Side by side comparison shows
the superiority of true EWCs to
so-called EWCs as exterior finishes
for cracked masonry. After two months,
the so-called EWC applied to the top
half of the crack failed completely. In
contrast, the true EWC applied to the
bottom half remained intact after a full
year of exposure with temperatures
ranging from 0° F. to nearly 100° F.

Dirt Pickup Resistance

True EWCs based on 100% acrylic emulsions (left) possess much better ultraviolet stability and resistance to dirt pickup than silicone formulations (right). As a result, the acrylic EWC looks much more attractive after 36 months of horizontal, face-up exposure.